denoisr is a non-parametric smoother for noisy curve data, providing different functions to estimate various parameters:
estimate_H0_list() and estimate_H0_deriv_list() estimate the smoothness of the curves.estimate_b_list() and estimate_bandwidth() estimate the bandwidth used in the Nadaraya-Watson estimator.estimate_curve() estimates one curve, given bandwidths.smooth_curves() and smooth_curves_regularity() estimate the curves.You can learn more about them in vignette('denoisr').
To install the latest version directly from Github, please use
# install.packages("devtools")
devtools::install_github("StevenGolovkine/denoisr")To build the vignette as well, please use
# install.packages("devtools")
devtools::install_github("StevenGolovkine/denoisr", build_vignettes = TRUE)The denoisr package depends on the R-packages doParallel, dplyr, foreach, funData, iterators, KernSmooth, magrittr, np, parallel, purrr, Rcpp and RcppArmadillo.
The theoretical foundations of the estimation of regularity parameters and curves smoothing are described in:
Golovkine S., Klutchnikoff N., Patilea V. (2021) - Learning the smoothness of noisy curves with application to online curve reconstruction.
Please use GitHub issues for reporting bugs or issues.