This function estimates the covariance matrix of a real dataset.
learn_covariance(df, method = "lm")Dataframe containing the real dataset.
Method to used to estimate the eigenvalues of the matrix, default='lm'. See details.
A matrix with the estimated covariance.
Two methods are available for the estimation of the eigenvalues of
the matrix. For lm, we fit a linear model on the log of the first
eigenvalues on the log of their rank. For min, we add the minimum of the
estimated eigenvalues to the complete set of eigenvalues to ensure that they
are all positives.
if (FALSE) {
if(interactive()){
attach(powerconsumption)
# Using 'lm'
cov <- learn_covariance(powerconsumption, 'lm')
# Using 'min'
cov <- learn_covariance(powerconsumption, 'min')
}
}