denoisr
is a non-parametric smoother for noisy curve data, providing different functions to estimate various parameters:
estimate_H0_list()
and estimate_H0_deriv_list()
estimate the smoothness of the curves.estimate_b_list()
and estimate_bandwidth()
estimate the bandwidth used in the Nadaraya-Watson estimator.estimate_curve()
estimates one curve, given bandwidths.smooth_curves()
and smooth_curves_regularity()
estimate the curves.You can learn more about them in vignette('denoisr')
.
To install the latest version directly from Github, please use
# install.packages("devtools")
devtools::install_github("StevenGolovkine/denoisr")
To build the vignette as well, please use
# install.packages("devtools")
devtools::install_github("StevenGolovkine/denoisr", build_vignettes = TRUE)
The denoisr
package depends on the R
-packages doParallel
, dplyr
, foreach
, funData
, iterators
, KernSmooth
, magrittr
, np
, parallel
, purrr
, Rcpp
and RcppArmadillo
.
The theoretical foundations of the estimation of regularity parameters and curves smoothing are described in:
Golovkine S., Klutchnikoff N., Patilea V. (2021) - Learning the smoothness of noisy curves with application to online curve reconstruction.
Please use GitHub issues for reporting bugs or issues.